From coinductive proofs to exact real arithmetic: theory and applications
نویسنده
چکیده
Based on a new coinductive characterization of continuous functions we extract certified programs for exact real number computation from constructive proofs. The extracted programs construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded trees describing when the algorithm writes and reads digits. We discuss several examples including the extraction of programs for polynomials up to degree two and the definite integral of continuous maps. This is a revised and substantially extended version of the conference paper [6].
منابع مشابه
From Coinductive Proofs to Exact Real Arithmetic
We give a coinductive characterization of the set of continuous functions defined on a compact real interval, and extract certified programs that construct and combine exact real number algorithms with respect to the binary signed digit representation of real numbers. The data type corresponding to the coinductive definition of continuous functions consists of finitely branching non-wellfounded...
متن کاملProgram extraction from coinductive proofs and its application to exact real arithmetic
Program extraction has been initiated in the field of constructive mathematics, and it attracts interest not only from mathematicians but also from computer scientists nowadays. From a mathematical viewpoint its aim is to figure out computational meaning of proofs, while from a computer-scientific viewpoint its aim is the study of a method to obtain correct programs. Therefore, it is natural to...
متن کاملCoinductive Formal Reasoning in Exact Real Arithmetic
In this article we present a method for formally proving the correctness of the lazy algorithms for computing homographic and quadratic transformations — of which field operations are special cases— on a representation of real numbers by coinductive streams. The algorithms work on coinductive stream of Möbius maps and form the basis of the Edalat–Potts exact real arithmetic. We use the machiner...
متن کاملCoinductive Definitions and Real Numbers
Real number computation in modern computers is mostly done via floating point arithmetic which can sometimes produce wildly erroneous results. An alternative approach is to use exact real arithmetic whose results are guaranteed correct to any user-specified precision. It involves potentially infinite data structures and has therefore in recent years been studied using the mathematical field of ...
متن کاملFormalising Exact Arithmetic in Type Theory
In this work we focus on a formalisation of the algorithms of lazy exact arithmetic à la Potts and Edalat [1]. We choose the constructive type theory as our formal verification tool. We discuss an extension of the constructive type theory with coinductive types that enables one to formalise and reason about the infinite objects. We show examples of how infinite objects such as streams and expre...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Logical Methods in Computer Science
دوره 7 شماره
صفحات -
تاریخ انتشار 2011